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On the first cohomology group for simply connected Lie 
groups 
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Received 22 May 1984, in final form 9 November 1984 

Abstract. Let G be a simply connected Lie group, E be its Lie algebra, and d be a 
continuous representation of G in a vector space V. First cohomology groups for both the 
group G and its Lie algebra E are shown to be isomorphic. When the group G is also 
semi-simple, the first cohomology group is shown to be trivial for a particular class of 
representations. 

1. Introduction 

In the theory of Lie groups, many global properties are more or less reflected in the 
infinitesimal ones. This reflection makes the Lie algebra an excellent tool for studying 
properties at large. An exception to this is that the connection between group 
cohomology (Eilenberg and MacLane 1947) and the Lie algebra cohomology 
(Hochschild and Serre 1953) withvalues in the representation space is not fully discussed. 
However, in the absence of a general method to compute this general cohomology, it 
is of great importance to present a study of low-order cohomology groups for continuous 
groups and their Lie algebras. Of particular interest are the first cohomology groups 
for certain Lie groups and their Lie algebras due to their physical relevance (Komy 
1980, 1981). First cohomology groups of the Poincare group relative to its various 
actions on sets of solutions of free relativistic wave equations are of great importance. 
With each cocycle found a fully relativistic quasi-free quantum field theory with finite 
energy can be constructed which will describe many attributes of the particles. The 
Poincare group is a semi-direct product group and one must know first the correspond- 
ing cohomology groups for the semi-simple part. Also first-order cocycles were found 
to be of fundamental importance for the construction of continuous tensor products 
of group representations (Parthasarthy and Schmidt 1972). In § 2 ,  the computation of 
the first cohomology groups for simply connected Lie groups is reduced to an algebraic 
one. Differential geometric notation will be used. If the group is also semi-simple, 
then its cohomology group for a certain class of representations is shown to be trivial. 

2. First cohomology groups and their isomorphism 

Let G be a simply connected Lie group, E be its Lie algebra, and C#I is a continuous 
(unitary) representation in a complex Hilbert H. Let e ( = d 4 )  be the induced rep- 
resentation of E in H. In general the operators O ( X ) ,  X E  E are not all bounded 
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operators in H. Hence we have to consider only a proper common invariant dense 
domain for the set of unbounded operators. A possible choice for this domain is the 
Garding space of regular vectors of the representation 4. Sometimes it is more 
convenient to take as the invariant domain the space of analytic vcctors for 4 of G. 
This subspace (of H )  is most convenient in applications and it is denoted by V (Barut 
and Raczka 1980). It can be shown that the first cohomology groups of the group G 
with values in H and respectively in  V are isomorphic (Erven and Falkowski 1981). 

A 1 -cocycle Cor G is a smooth map ,f: G .+ V, given by 

Each vector a E V determines a 1-cocycie given by, 

f , ( x )  = d I x ) a  - a ,  X E G .  

Such a 1-cocycle is callea a 1-coboundary. Denote the set of I-cocycles (resp. 1 -  
coboundaries) by Z ' ( G ,  V )  (resp. B' (G ,  V ) ) .  Then the first cohomology group, 
denoted by H1(G, V), is defined as the quotient group 

H'IG,  V) = Z ' ( G ,  V ) / B ' ( G ,  V) 

Similarly, a 1-cocycle for E is a linear map F :  E -$ V, given by the equation 

F U ,  k1) = W I ) F ( ~ ) -  e ( k ) F ( w ,  h, k E E. (3)  

Also, each vector a E V determines a 1-cocycle F, given by the eqliation 

F,(W = ems, h E E. (4) 

Such a 1-cocycle is call.:d SI I-coboundary. The first cohomology group, denoted by 
H ' ( E ,  V),  is the quotient group 

H ' ( E ,  V ) = Z ' ( E ,  V ) / B ' ( E ,  V) 

where Z ' ( E ,  V) (resp. B ' ( E ,  V ) )  is the set of 1-cocycles (resp. 1-coboundaries). 
The main result of this work is summarised by the following theorem. 

Theorem 1. Let G be a simply connected Lie group, E be its Lie algebra, and 4 is a 
continuous representation of G in a vector space V. Then we have the isomorphism, 

H ' ( G ,  V )  = H ' (  E, V).  

To prove this theorem we need the following lemma and propositions. 

L.?mma. Suppose that G is a connected group. Let f be a 1 -cocycle such that f ' ( e )  = 0. 
Then f = 0. 

Proof: Since f is a 1-cocycle it follows from (1) that 

f ( e ) = O .  

We now fix b E G. Again, since f is a 1-cocycle we have 

f ( b y )  = 4 ( b ) f ( y ) + f ( b ; ,  .Y€G 

f ( A h Y )  = 4 ( b ) f ( Y ) + f ( b ) ,  y E G 

which we write in the form 

( 5 )  
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where hb: G + G  is a diffeomorphism. We then denote its derivative by dhb  which is 
the bundle map  (Greub et al 1973) 

dhb: TG+ TQ 

We then differentiate (6) at the point y = e to obtain 

f ’ ( b ;  &(e, k ) )  = 4 ( b ) f ’ ( e ;  k ) ;  k E E. 

Given that f ( e )  = 0, it follows that f( b )  =constant. Since G is connected, then 
f ( b ) = f ( e ) = O ,  where relation ( 5 )  has been used. Since b is arbitrary, the lemma 
follows. 

Proposition 1.  Let f~ Z ’ ( G ,  V) and define the linear map F :  E -. V by setting 

F ( h )  = f ( e ;  h ) ,  h E E. ( 7 )  

Then F E  z’(  E, V). 

Proot We fix b E G .  Since f is a 1-cocycle, we have 

f ( x b )  = d ) ( X ) f ( b ) + f ( X ) ,  X E G  

which we write in the form 

f( P d ; )  = $ ( X ) f ( b )  + A x ) ,  k e G  (8) 

where p b :  G-. G ,  is a diffeomorphism. We then differentiate (8) at the point x = e to 
obtain 

f ’rb;  dPb(e, h ) l =  + ’ ( e ;  h ) f ( b ) + f ’ ( e ;  h ) ,  h E E  

which can be conveniently written in the form 

Y h ( f ) =  e ( h ) f ( b ) + F ( h ) ,  hE E (9) 

where Yh is the right invariant vector field generated by the vector h (Auslander 1963), 
and 6 is as defined above. Next, let k E E be another vector and y k  is the corresponding 
right invariant vector field generated by k. Applying Yk to equation (9), we easily 
deduce the following equation, 

r Y h ,  ykl(f)= o ( h ) Y k ( f ) - o ( k ) Y h ( f ) .  (10) 

Since Y h  and Yk are right invariant vector fields, we then have 

[ yh, y k l ( f )  = Y [ h , k ] ( f ) .  

Using this identity, equation (10) takes the form 

y ~ h . ~ i ( . f ) =  e ( h )  Y k ( . f ) - e ( k ) Y h ( f )  
which we write in the form 

f”[b; Yih.,,(b)I= o ( h ) f ’ i b ;  k ) - o ( k ) f ’ ( b ;  h ) .  

Setting b = e, and using equation (71, the last equation yields 

F ( [ h ,  k ] )  = o ( h ) F ( k )  - o ( k ) F ( h ) ,  h , k E E  

i.e. F E  Z ’ ( E ,  VI, and the proposition follows. 
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Proposition 2. Suppose that G is a simply connected group. Let FE  Z ’ ( E ,  V), then 
there exists an  f~ Z ’ ( G ,  V )  such that f’( e )  = E 

Proof: Consider the E-valued 1-form w on G defined by 

X E G , ~ E E  w [ ( X h ( x ) l =  d[x ; F (  h ) I 3  

where Xh is the left parallel vector field determined by the vector h. It is convenient 
to write (11 )  in the form, 

0 ( X h  ) = 4[(F( h 11 = 4 ( Fh 1. (12) 

It will be shown that w is closed. For, let X ,  be another left parallel vector field 
determined by the vector k e  E. If d is the exterior derivative (van Westenhoz 1978) 

d W ( X h ,  x k ) = X h w ( X k ) - X k W ( X h ) -  h’[[xh, x k l l ,  
and on using definition (12), we obtain 

d o  ( x h ,  xk = (xh4 ) Fk - ( x k 4  Fh - 4 ( F[  h,  k ] )  

= 4 { 0 ( h ) F ( k )  - O ( k ) F ( h ) -  F ( [ h ,  k l ) ) .  

Since FE  Z ’ (  E, V), then it follows that 

dw = O .  

Given that G is a simply connected group, the PoincarC inverse lemma ensures the 
existence of a smooth function (Helgason 1962), )‘“: G +  V, such that w = df: We may 
choose the function f such that 

f ( e ) = O .  (13) 

In particular, 

f ’ ( e ;  h ) = w [ ( e ; X h ( e ) ] =  4 ( e ) F ( h ) = F ( h ) .  

It remains to be shown that f is a 1-cocycle for G .  We fix b E G ,  and set 

g ( y )  =f(by) -f(b) - 4 ( b ) f ( Y ) ,  y e G .  (14) 

We then put y = e, and use (13) to obtain g ( e )  = 0. Differentiating equation (14), we 
obtain 

g’(J’ ;  k)=f’(AbY, dAb(J’; k))-4(b)f’(gf;f’)  

= w [ A b Y ;  dAb(Y; k ) l - 4 ( b ) w ( y ;  k )  

= 4 ( b Y ) F ( k ) - 4 ( b ) 4 ( Y ) F ( k )  = o  
where Ab, dAb are the maps defined earlier, and b e  E. 

then, 
The above equality yields g ( y )  = constant. Since G is a (simply) connected group 

g ( y )  = d e )  = 0. 

f (bY1 = f ( b ) + 4 ( b ) f ( y )  

Equation (14) then yields, 

and the proposition follows. 
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Proofoftheorem 1. Proposition 1 defines the linear map (+: Z ' ( G ,  V ) +  Z ' ( E ,  V )  given 
by, 

a ( f )  = f ( e ) ,  f e Z ' ( G ,  V ) .  (16) 

I f f €  B'(G, V ) ,  then it has the functional form, f ( x )  = 4 ( x ) a  - a, for some a E V. We 
differentiate this equation at the point x = e, and obtain 

f ' ( e ;  h )  = O ( h ) a ,  h E  E 

and so f~ B' (G ,  V ) .  Thus a restricts to the map 

a :  B ' ( G ,  V ) + B 1 ( E ,  V ) .  

Therefore we have the induced map, 

a,: H ' ( G ,  V ) +  H ' ( E ,  V). 

In order to prove the theorem, we have to show that the induced map a# is an 
isomorphism. 

Let [FIE H ' ( E ,  V )  be the class of cohomologous 1-cocycles for E, and let FE  
Z ' ( E ,  V )  represent this class. By proposition 2, there exists a n f E  Z1(G, V ) ,  such that 

a ( f )  = F. 

Let [ f l ~  H ' ( G ,  V )  be the class of cohomologous 1-cocycles for G, then we have 

% J f l = [ . ( f ) I = [ F l  

and so a# is onto. Next consider the elementfE Z ' ( G ,  V ) ,  such that a ( f ) ~  + ' ( E ,  V ) ,  
then we have 

f ( e ;  h )  = O(h)a ,  

A x )  = A x )  - + ( x ) a  + a, 

for some a E V,  and H E  E. (17) 

(18) 

Now, define the function g :  G +  V,  by the relation: 

X E  G, and U E  V. 

Hence g E Z ' ( G ,  V ) .  Differentiate (18) at point x = e to obtain, 

g ' ( e ;  h ) = f ( e ;  h ) - 4 ' ( e ;  h ) a = e ( h ) o - e ( h ) a = O ,  ~ E E .  (19) 

Since G is connected, using the lemma, equation (19) yields: 

A x )  = 0, X E G .  

Then 

f ( x )  = d J ( x ) a  - a  

i.e. Y E  B ' ( G ,  V ) ,  and so cy# is 1 - 1, and the theorem follows. 

3. Computation of H ' ( E ,  V )  

To compute H ' ( G ,  V )  for simply connected Lie groups, and in view of theorem 1, we 
have to compute H ' ( E ,  V )  for the Lie algebra E. Since this cohomology is representa- 
tion dependent, different classes of representations must be considered separately. An 
important case is when the Lie algebra E is semi-simple. For a certain class of 
representations we have the following theorem. 
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Theorem 2. Let E be a semi-simple Lie algebra, and  8 is a representation for E in a 
vector space V such that second order Casimir operator is invertible, then H’( E, V )  = 0. 

Proof: Let { e , } ;  be a basis for E, then 

[em, epl = CZpe, ff,p, y = 1 , 2  ) . . .  (20) 

[O(e , ) ,  0 (e , )1=  c : , e ( e , ) ,  a , @ ,  y =  1 ,2  ,..., n. (21) 

where C& are the structure constants. Since 6 is a representation for E, we have 

The second-order Casimir operator (exists only for semi-simple Lie algebra) is defined 
as a function R on V by the relation 

= g a P G , ) e ( e , ) ,  a , p = l , 2  , . . . ,  n 

where g,, is the metric tensor (or, the Killing form). Using relation (21), it is easy to 
show that, 

a e ( e , )  = e ( e , ) R ,  a = 1 , 2  , . . . ,  n. (22) 

Since F is a 1-cocycle for E, and if we set h = e, and k = ep, then equation (3) 
takes the form 

CZpF(e , )  = e ( e , ) F ( e p )  - O ( e p ) F ( e , ) ,  a , p = 1 , 2  , . . .  n.  (23) 

b = g a P e ( e , ) F ( e p ) ,  a , p = l , 2  , . . . ,  n. (24) 

e(  e , )  b = [ g,*cZ, + gpLsc;l,]O( e , )F(  eh ) + R F (  e , ) .  

gpAc:, + g ~ ” c ; I ,  = 0 

Next, define the element bE V by the relation 

From (23) and  (24) we deduce that: 

(25) 
Since E is semi-simple, then the invariance of the Killing form gives the relation 

hence equation (25) reduces to 

e ( e , ) b  = R F ( e , ) ,  a = 1 , 2  , . . . ,  n. 

Given that 0 is invertible, i.e. R-’ exist, then the above relation yields 

e( e , ) R - ’ b  = F (  e , ) ,  a = 1 , 2  , . . . ,  n. (26) 
The element K ’ b  is an element in V, say a, hence (26) reduces to 

F ( e , )  = e ( e , ) a ,  a = 1 , 2  , . . . ,  n. 
However the linearity of F implies that, 

~ ( h )  = e ( h ) a ;  vh E E. 

This is the functional relation (41, and the theorem follows. 
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